TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS] fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
XPARA TODO FORMA DE FUNÇÃO E EQUAÇÃO EM:
Em um sistema quântico constituído de muitas partículas idênticas com spin inteiro, a estatística de Bose-Einstein, ou estatística BE, é utilizada para descrever o sistema e calcular os valores médios das grandezas físicas.
Em um sistema de bósons idênticos de massa , que possuem interação mútua desprezível, contidos em um recipiente de volume , a uma temperatura , em equilíbrio, o número médio de partículas num estado de energia é dado por
,
em que é a degenerescência quântica do estado , é a energia do estado , é o potencial químico, e , em que é a constante de Boltzmann[1].
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Em um sistema quântico constituído de muitas partículas idênticas com spin inteiro, a estatística de Bose-Einstein, ou estatística BE, é utilizada para descrever o sistema e calcular os valores médios das grandezas físicas.
Em um sistema de bósons idênticos de massa , que possuem interação mútua desprezível, contidos em um recipiente de volume , a uma temperatura , em equilíbrio, o número médio de partículas num estado de energia é dado por
,
em que é a degenerescência quântica do estado , é a energia do estado , é o potencial químico, e , em que é a constante de Boltzmann[1].
Índice
Formulação matemática
Seja um gás de partículas idênticas confinadas em um volume . Sendo o conjunto das coordenadas generalizadas da i-ésima partícula e o índice rotulador dos possíveis estados quânticos desta única partícula, o estado do gás inteiro é então descrito pelo conjunto de números quânticos
os quais definem a função de onda do gás nesse estado.
A estatística BE trata de partículas em que o spin total é medido em unidade inteiras de — os chamados bósons — como, por exemplo, o átomo de Hélio-4 e o fóton.[1] Partículas quânticas são indistinguíveis, ou seja, a troca de duas partículas não altera o estado do sistema. Além disto, a função de onda total para um sistema de bósons é simétrica sobre a troca de duas partículas[1]
Como consequência, os bósons não obedecem ao princípio de exclusão de Pauli, não havendo limitação no número de partículas que podem ocupar um dado estado quântico[1]. Tomando este gás a uma temperatura e que cada partícula está em um estado de energia onde há partículas neste estado, o gás inteiro possui estados possíveis. Desprezando as interações mútuas entre as partículas, a energia do gás no estado será dada por
em que a soma se estende sobre todos os estados possíveis de uma partícula[2]. Como o número de partículas é fixo, também temos que
A função partição do gás será dada por
Essa soma é sobre todos os estados possíveis do gas inteiro, isto é, sobre todos os possíveis números [2]. Como exp é a probabilidade relativa de encontrar o gás em um estado partículas onde há partículas em 1, em partículas em 2 e assim sucessivamente, pode-se escrever o número médio de partículas em um estado como
Somando todos os possíveis valores de , usando a propriedade multiplicativa da exponencial e rearranjando, pode-se escrever como
em que o sobrescrito no somatório indica a soma com exceção do estado em particular. Adotando a notação:
A restrição de fixo implica que se uma partícula está no estado , a soma se estende pelas partículas restantes que podem ser colocadas nos estados . Ao executar explicitamente a soma sobre ter-se-á[3]
Estabelecendo a seguinte relação entre e onde
em que
e portanto,
Mas como é uma soma sobre muitos estados, espera-se que a variação de seu logaritmo natural com o número total de partícula seja imperceptível para o qual um estado particular seja omitido da soma[3]. Vamos introduzir a aproximação de que é independente de , então podemos só escrever para todo [3]. Logo,
Do ensemble canônico, sabe-se que essa derivada parcial resulta em , em que é o potencial químico do gás[3]. Portanto,
Substituindo estes resultados em teremos
Cancelando ter-se-á
Que é uma série geométrica. Usando a função partição de acordo com[3] isso resultará em
Se o estado é degenerado com degenerescência então o número médio de partículas com energia é obtido multiplicando a expressão anterior por . Finalmente,
A estatística de Bose-Einstein reduz-se à estatística de Maxwell-Boltzmann para energias: [4][5].
Seja um gás de partículas idênticas confinadas em um volume . Sendo o conjunto das coordenadas generalizadas da i-ésima partícula e o índice rotulador dos possíveis estados quânticos desta única partícula, o estado do gás inteiro é então descrito pelo conjunto de números quânticos
os quais definem a função de onda do gás nesse estado.
A estatística BE trata de partículas em que o spin total é medido em unidade inteiras de — os chamados bósons — como, por exemplo, o átomo de Hélio-4 e o fóton.[1] Partículas quânticas são indistinguíveis, ou seja, a troca de duas partículas não altera o estado do sistema. Além disto, a função de onda total para um sistema de bósons é simétrica sobre a troca de duas partículas[1]
Como consequência, os bósons não obedecem ao princípio de exclusão de Pauli, não havendo limitação no número de partículas que podem ocupar um dado estado quântico[1]. Tomando este gás a uma temperatura e que cada partícula está em um estado de energia onde há partículas neste estado, o gás inteiro possui estados possíveis. Desprezando as interações mútuas entre as partículas, a energia do gás no estado será dada por
em que a soma se estende sobre todos os estados possíveis de uma partícula[2]. Como o número de partículas é fixo, também temos que
A função partição do gás será dada por
Essa soma é sobre todos os estados possíveis do gas inteiro, isto é, sobre todos os possíveis números [2]. Como exp é a probabilidade relativa de encontrar o gás em um estado partículas onde há partículas em 1, em partículas em 2 e assim sucessivamente, pode-se escrever o número médio de partículas em um estado como
Somando todos os possíveis valores de , usando a propriedade multiplicativa da exponencial e rearranjando, pode-se escrever como
em que o sobrescrito no somatório indica a soma com exceção do estado em particular. Adotando a notação:
A restrição de fixo implica que se uma partícula está no estado , a soma se estende pelas partículas restantes que podem ser colocadas nos estados . Ao executar explicitamente a soma sobre ter-se-á[3]
Estabelecendo a seguinte relação entre e onde
em que
e portanto,
Mas como é uma soma sobre muitos estados, espera-se que a variação de seu logaritmo natural com o número total de partícula seja imperceptível para o qual um estado particular seja omitido da soma[3]. Vamos introduzir a aproximação de que é independente de , então podemos só escrever para todo [3]. Logo,
Do ensemble canônico, sabe-se que essa derivada parcial resulta em , em que é o potencial químico do gás[3]. Portanto,
Substituindo estes resultados em teremos
Cancelando ter-se-á
Que é uma série geométrica. Usando a função partição de acordo com[3] isso resultará em
Se o estado é degenerado com degenerescência então o número médio de partículas com energia é obtido multiplicando a expressão anterior por . Finalmente,
A estatística de Bose-Einstein reduz-se à estatística de Maxwell-Boltzmann para energias: [4][5].
Gás de fótons
Um caso especial da estatística de Bose-Einstein é o gás de fótons. Fótons possuem spin inteiro igual a 1, então desta forma são considerados bósons. O caso é especial devido ao fato de que se considerarmos vários fótons dentro de um recipiente com volume V, o número destes fótons não será constante, pois conforme estes fótons interagem com as paredes do recipiente estes são absorvidos ou emitidos. Desta forma, não podemos impor um vínculo ao número total de fótons no sistema. Neste caso, precisaremos realizar as somas sobre todos os possíveis números de partículas em cada estado, da forma[6]:
para todo r.
A função partição para o gás de fótons é dada por:
No qual R são todos os estados possíveis do gás. Como não há vínculos agora para o número de partículas por estado, podemos utilizar as propriedades das funções exponenciais e reescrever a soma acima como:
Ou ainda:
Como não há restrição para o número de fótons, as somas acima são consideradas até um número muito grande de partículas por estado de energia, no qual matematicamente isto se traduz a realizarmos a soma até o infinito, embora fisicamente, estejamos carregando a soma até um número muito grande de partículas. Como estamos tratando de uma exponencial com argumento negativo, após um certo valor os termos serão desprezíveis, não tendo problemas com divergências. Se olharmos com cuidado para as somas dentro dos colchetes acima, percebe-se que podemos escrevê-las como abaixo:
Ou seja, cada termo é uma soma geométrica. Assim, podemos reescrever a função partição da seguinte forma:
E o logaritmo natural da função partição, que é o qual estamos interessados é dado por:
Nosso próximo objetivo agora é encontrar o número médio de partículas em um estado de energia . Tal resultado pode ser obtido através da expressão abaixo[6]:
Realizando a derivação do logaritmo natural da função partição, temos o resultado abaixo:
O resultado acima é este pois a única derivada que não é zero é o termo da soma no qual . Podemos simplificar o resultado acima, multiplicando e dividindo a expressão acima pela exponencial com o mesmo argumento, porém positivo, e assim obtemos o importante resultado dado por:
Este resultado é conhecido como a distribuição de Planck, e fornece o número médio de fótons em um determinado estado s. Uma das aplicações mais famosas do resultado acima é no problema da radiação de corpo negro.
Um caso especial da estatística de Bose-Einstein é o gás de fótons. Fótons possuem spin inteiro igual a 1, então desta forma são considerados bósons. O caso é especial devido ao fato de que se considerarmos vários fótons dentro de um recipiente com volume V, o número destes fótons não será constante, pois conforme estes fótons interagem com as paredes do recipiente estes são absorvidos ou emitidos. Desta forma, não podemos impor um vínculo ao número total de fótons no sistema. Neste caso, precisaremos realizar as somas sobre todos os possíveis números de partículas em cada estado, da forma[6]:
para todo r.
A função partição para o gás de fótons é dada por:
No qual R são todos os estados possíveis do gás. Como não há vínculos agora para o número de partículas por estado, podemos utilizar as propriedades das funções exponenciais e reescrever a soma acima como:
Ou ainda:
Como não há restrição para o número de fótons, as somas acima são consideradas até um número muito grande de partículas por estado de energia, no qual matematicamente isto se traduz a realizarmos a soma até o infinito, embora fisicamente, estejamos carregando a soma até um número muito grande de partículas. Como estamos tratando de uma exponencial com argumento negativo, após um certo valor os termos serão desprezíveis, não tendo problemas com divergências. Se olharmos com cuidado para as somas dentro dos colchetes acima, percebe-se que podemos escrevê-las como abaixo:
Ou seja, cada termo é uma soma geométrica. Assim, podemos reescrever a função partição da seguinte forma:
E o logaritmo natural da função partição, que é o qual estamos interessados é dado por:
Nosso próximo objetivo agora é encontrar o número médio de partículas em um estado de energia . Tal resultado pode ser obtido através da expressão abaixo[6]:
Realizando a derivação do logaritmo natural da função partição, temos o resultado abaixo:
O resultado acima é este pois a única derivada que não é zero é o termo da soma no qual . Podemos simplificar o resultado acima, multiplicando e dividindo a expressão acima pela exponencial com o mesmo argumento, porém positivo, e assim obtemos o importante resultado dado por:
Este resultado é conhecido como a distribuição de Planck, e fornece o número médio de fótons em um determinado estado s. Uma das aplicações mais famosas do resultado acima é no problema da radiação de corpo negro.
Radiação de corpo negro
Ver artigo principal: Radiação de corpo negroTodo corpo a uma temperatura emite radiação eletromagnética. A distribuição de Planck fornece o espectro de emissão para uma classe especifica de corpos, os chamados corpos negros, definidos como os corpos que absorvem toda a radiação incidente. Pode-se modelar um corpo negro como uma cavidade metálica com volume , tal que haja apenas um pequeno orifício em uma de suas paredes. Logo, esta cavidade absorve toda a radiação que entra por ali, e radiação emitida pelo orifício que é oriunda das emissões a partir das superfícies internas da cavidade se comporta como se fosse um corpo negro.[7]
Busca-se a chamada radiância espectral , que fornece a potência irradiada por unidade de área com frequência entre e pelo corpo estudado a uma data temperatura. Através de uma análise física do problema, pode-se mostrar que a radiância espectral está diretamente ligada com a densidade de energia dentro da cavidade. A relação entre as duas grandezas é dada por:
Pode-se então obter a densidade de energia, e assim resolve-se o problema da mesma maneira. A densidade de energia pode ser obtida a partir da probabilidade de um nível com energia estar ocupado por fótons, sendo assim se multiplicarmos este valor pelo número de médio fótons por unidade de volume naquele estado, teremos a densidade de energia dentro desta cavidade na forma:[8]
Onde é a densidade de estados ou degenerescência. Como temos o número médio de fótons em um estado , basta multiplicar este número pela energia do estado , assim:
Como os estados do sistema estão muito próximos um dos outros, por conta da cavidade ocupar um volume V macroscópico, podemos tratar as variáveis como sendo contínuas. O número de estados por unidade de volume dentro da cavidade com frequência entre e é dada por:[9]
Sabemos que a energia e a frequência de um fóton estão ligado pela expressão de Planck , desta forma se fizermos a substituição sugerida, obtemos assim a expressão para a densidade de energia dentro de uma cavidade.
E a radiância espectral é dada diretamente por:
Todo o caminho feito para o obtenção do resultado foi a partir da análise das propriedades quânticas e estatísticas de fótons dentro de um volume V, e em equilíbrio térmico a uma temperatura T. Pode-se chegar no mesmo resultado analisando a interação da radiação eletromagnética dentro do volume V com as paredes do recipiente[10].

Todo corpo a uma temperatura emite radiação eletromagnética. A distribuição de Planck fornece o espectro de emissão para uma classe especifica de corpos, os chamados corpos negros, definidos como os corpos que absorvem toda a radiação incidente. Pode-se modelar um corpo negro como uma cavidade metálica com volume , tal que haja apenas um pequeno orifício em uma de suas paredes. Logo, esta cavidade absorve toda a radiação que entra por ali, e radiação emitida pelo orifício que é oriunda das emissões a partir das superfícies internas da cavidade se comporta como se fosse um corpo negro.[7]
Busca-se a chamada radiância espectral , que fornece a potência irradiada por unidade de área com frequência entre e pelo corpo estudado a uma data temperatura. Através de uma análise física do problema, pode-se mostrar que a radiância espectral está diretamente ligada com a densidade de energia dentro da cavidade. A relação entre as duas grandezas é dada por:
Pode-se então obter a densidade de energia, e assim resolve-se o problema da mesma maneira. A densidade de energia pode ser obtida a partir da probabilidade de um nível com energia estar ocupado por fótons, sendo assim se multiplicarmos este valor pelo número de médio fótons por unidade de volume naquele estado, teremos a densidade de energia dentro desta cavidade na forma:[8]
Onde é a densidade de estados ou degenerescência. Como temos o número médio de fótons em um estado , basta multiplicar este número pela energia do estado , assim:
Como os estados do sistema estão muito próximos um dos outros, por conta da cavidade ocupar um volume V macroscópico, podemos tratar as variáveis como sendo contínuas. O número de estados por unidade de volume dentro da cavidade com frequência entre e é dada por:[9]
Sabemos que a energia e a frequência de um fóton estão ligado pela expressão de Planck , desta forma se fizermos a substituição sugerida, obtemos assim a expressão para a densidade de energia dentro de uma cavidade.
E a radiância espectral é dada diretamente por:
Todo o caminho feito para o obtenção do resultado foi a partir da análise das propriedades quânticas e estatísticas de fótons dentro de um volume V, e em equilíbrio térmico a uma temperatura T. Pode-se chegar no mesmo resultado analisando a interação da radiação eletromagnética dentro do volume V com as paredes do recipiente[10].
Comparação entre as estatísticas
Nota-se que um sistema de bósons possui uma maior ocupação dos estados, devido aos efeitos quânticos de simetria da função de onda do sistema [11]. Nesta distribuição identifica-se que para o regime as distribuições quânticas de Bose-Einstein (BE) e Fermi-Dirac (FD) se aproximam da distribuição clássica de Maxwell-Boltzmann (MB), que representa o regime de baixas densidades e altas temperaturas, ou seja, o limite clássico [12].
Em diferentes valores do potencial químico, nota-se que os estados de menor energia (próximos ao estado fundamental) são os mais populados. Para baixas temperaturas as partículas se concentram nos estados de menor energia. No limite de temperatura tendendo a zero, todas as partículas vão para o estado fundamental (), logo, enquanto para os demais estados [13]. Já para altas temperaturas, devido à energia térmica do sistema, as partículas tem maior probabilidade de atingir estados mais energéticos.
Nota-se que um sistema de bósons possui uma maior ocupação dos estados, devido aos efeitos quânticos de simetria da função de onda do sistema [11]. Nesta distribuição identifica-se que para o regime as distribuições quânticas de Bose-Einstein (BE) e Fermi-Dirac (FD) se aproximam da distribuição clássica de Maxwell-Boltzmann (MB), que representa o regime de baixas densidades e altas temperaturas, ou seja, o limite clássico [12].
Em diferentes valores do potencial químico, nota-se que os estados de menor energia (próximos ao estado fundamental) são os mais populados. Para baixas temperaturas as partículas se concentram nos estados de menor energia. No limite de temperatura tendendo a zero, todas as partículas vão para o estado fundamental (), logo, enquanto para os demais estados [13]. Já para altas temperaturas, devido à energia térmica do sistema, as partículas tem maior probabilidade de atingir estados mais energéticos.
Condensação de Bose-Einstein
O condensado de Bose-Einstein é uma fase da matéria formada por bósons a uma temperatura muito próxima do zero absoluto. Nestas condições, uma grande fração de átomos atinge o mais baixo estado quântico, e nestas condições os efeitos quânticos podem ser observados em escala macroscópica. Sistemas em baixa temperatura ou com densidade relativamente alta de partículas são mais prováveis de apresentarem comportamentos quânticos, mesmo em sistemas onde a interação intramolecular é desprezível[14].
O condensado de Bose-Einstein é uma fase da matéria formada por bósons a uma temperatura muito próxima do zero absoluto. Nestas condições, uma grande fração de átomos atinge o mais baixo estado quântico, e nestas condições os efeitos quânticos podem ser observados em escala macroscópica. Sistemas em baixa temperatura ou com densidade relativamente alta de partículas são mais prováveis de apresentarem comportamentos quânticos, mesmo em sistemas onde a interação intramolecular é desprezível[14].
Temperatura crítica para um gás ideal de bósons
Um gás ideal de bósons não está sujeito ao princípio de exclusão de Pauli. Logo, os bósons podem se condensar no seu estado de menor energia. A densidade de estados é dada por,
Logo, o número de partículas pode ser reescrito como
A distribuição continua pode ser utilizada pois os níveis do sistema quântico discreto são numerosos e estão muito próximos. Portanto,
Porém, como a integração dar-se-á de , a informação do estado fundamental é perdida. Todavia, quando a temperatura do sistema diminui, o potencial químico aumenta, e o número de partículas no estado fundamental é dada por [15]
Seja o número de partículas em estados excitados dado por , temos
Porém, para temperaturas muito próximas de zero , ou seja,
E, considerando grande,
Logo, . E se torna,
Introduzindo a mudança de variável , temos
A integral pode ser escrita em termos da função gama e da função zeta de Riemann . De fato, ela é igual a , onde , logo,
A temperatura crítica, ou de Bose-Einstein, , é a temperatura em que acima dela todos os bósons estão em um estado excitado, e pode ser encontrada tomando , onde , assim, da última equação,
Se , a razão de bósons no estado excitado em relação ao total, é
Consequentemente, a razão para os bósons no estado fundamental é,
Em mecânica estatística, a estatística Maxwell–Boltzmann descreve a distribuição estatística de partículas materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quânticos negligenciáveis. A estatística Maxwell–Boltzmann é consequentemente aplicável a quase qualquer fenômeno terrestre para os quais a temperatura está acima de poucas dezenas de kelvins.[1][2]
O número esperado de partículas com energia para a estatística de Maxwell–Boltzmann é onde:
onde:
- é o número de partículas no estado i
- é a energia do estado i-ésimo
- é a degenerescência do nível de energia i, o número de estados dos partículas (excluindo o estado de "partícula livre") com energia
- é o potencial químico
- é a constante de Boltzmann
- é a temperatura absoluta
- é o número total de partículas
- é a função partição
- é a função exponencial, sendo e o número de Euler
A distribuição de Maxwell-Boltzmann tem sido aplicada especialmente à teoria cinética dos gases, e outros sistemas físicos, além de em econofísica para predizer a distribuição da renda. Na realidade a distribuição de Maxwell-Boltzmann é aplicável a qualquer sistema formado por N "partículas" ou "indivíduos" que interacambiam estacionariamente entre si uma certa magnitude e cada um deles têm uma quantidade da magnitude e ao longo do tempo ocorre que .
Um gás ideal de bósons não está sujeito ao princípio de exclusão de Pauli. Logo, os bósons podem se condensar no seu estado de menor energia. A densidade de estados é dada por,
Logo, o número de partículas pode ser reescrito como
A distribuição continua pode ser utilizada pois os níveis do sistema quântico discreto são numerosos e estão muito próximos. Portanto,
Porém, como a integração dar-se-á de , a informação do estado fundamental é perdida. Todavia, quando a temperatura do sistema diminui, o potencial químico aumenta, e o número de partículas no estado fundamental é dada por [15]
Seja o número de partículas em estados excitados dado por , temos
Porém, para temperaturas muito próximas de zero , ou seja,
E, considerando grande,
Logo, . E se torna,
Introduzindo a mudança de variável , temos
A integral pode ser escrita em termos da função gama e da função zeta de Riemann . De fato, ela é igual a , onde , logo,
A temperatura crítica, ou de Bose-Einstein, , é a temperatura em que acima dela todos os bósons estão em um estado excitado, e pode ser encontrada tomando , onde , assim, da última equação,
Se , a razão de bósons no estado excitado em relação ao total, é
Consequentemente, a razão para os bósons no estado fundamental é,
Em mecânica estatística, a estatística Maxwell–Boltzmann descreve a distribuição estatística de partículas materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quânticos negligenciáveis. A estatística Maxwell–Boltzmann é consequentemente aplicável a quase qualquer fenômeno terrestre para os quais a temperatura está acima de poucas dezenas de kelvins.[1][2]
O número esperado de partículas com energia para a estatística de Maxwell–Boltzmann é onde:
onde:
- é o número de partículas no estado i
- é a energia do estado i-ésimo
- é a degenerescência do nível de energia i, o número de estados dos partículas (excluindo o estado de "partícula livre") com energia
- é o potencial químico
- é a constante de Boltzmann
- é a temperatura absoluta
- é o número total de partículas
- é a função partição
- é a função exponencial, sendo e o número de Euler
A distribuição de Maxwell-Boltzmann tem sido aplicada especialmente à teoria cinética dos gases, e outros sistemas físicos, além de em econofísica para predizer a distribuição da renda. Na realidade a distribuição de Maxwell-Boltzmann é aplicável a qualquer sistema formado por N "partículas" ou "indivíduos" que interacambiam estacionariamente entre si uma certa magnitude e cada um deles têm uma quantidade da magnitude e ao longo do tempo ocorre que .
L
A Energia de Fermi é a energia do nível ocupado mais energético em um sistema quântico fermiônico à temperatura de zero absoluto. A definição estende-se também a sistemas acima do zero absoluto, caso em que a energia de fermi corresponde à energia obtida mediante uma média das energias dos níveis quânticos com probabilidade de ocupação - devido à agitação térmica - diferentes da unidade, cada qual ponderado pela respectiva probabilidade de ocupação. Associa-se via de regra à energia de fermi a notação EF, e a nomenclatura retrata nítida homenagem ao físico ítalo-americano Enrico Fermi.
Introdução
Contexto geral
A energia de Fermi é importante na hora de entender o comportamento de partículas fermiônicas, como por exemplo os elétrons. Os férmions são partículas de spin semi-inteiro para as quais verifica-se a validade do princípio de exclusão de Pauli - que dita que dois férmions idênticos não podem ocupar simultaneamente o mesmo estado quântico. Desta maneira, quando um sistema possui vários elétrons, estes ocuparão níveis de energia maiores a medida que os níveis inferiores estejam preenchidos.
A energia de Fermi é um conceito que tem muitas aplicações na teoria dos orbitais atômicos, no comportamento dos semicondutores e na física do estado sólido em geral.
Em física do estado sólido a superficie de Fermi é a superficie no espaço de momentos na qual a energia de excitação total se iguala à energia de Fermi. Esta superfície pode ter uma topologia não trivial. Simplificadamente se pode dizer que a superfície de Fermi divide os estados electrônicos ocupados dos que permanecem livres.
Enrico Fermi e Paul Dirac, derivaram as estatísticas de Fermi-Dirac. Estas estatísticas permitem predizer o comportamento de sistemas formados por um grande número de elétrons, especialmente em corpos sólidos.
A energia de Fermi de um gás de Fermi (ou gás de elétrons livres) não relativista tridimensional se pode relacionar com o potencial químico através da equação:
onde εF é a energia de Fermi, k é a constante de Boltzmann e T é a temperatura. Portanto, o potencial químico é aproximadamente igual a a energia de Fermi à temperaturas muito inferiores a uma energia característica denominada Temperatura de Fermi, εF/k. Esta temperatura característica é da ordem de 105K para um metal a uma temperatura ambiente de (300 K), pelo que a energia de Fermi e o potencial químico são essencialmente equivalentes. Este é um detalhe significativo dado que o potencial químico, e não a energia de Fermi, é quem aparece nas estatísticas de Fermi-Dirac.
Contexto avançado
Elétrons são férmions, ou seja, são partículas regidas pela estatística de Fermi. Nesta estatística, um dado estado quântico pode ser ocupado por no máximo um e não mais que um férmion, e portanto a máxima probabilidade de ocupação de um dado estado quântico é um. Os elétrons situados dentro da amostra estão confinados por um potencial atrativo exercido pelos íons positivos da rede. Conforme mostrado pela mecânica quântica, potenciais confinantes apresentam níveis de energias discretos. No caso dos átomos isto se reflete nos tão conhecidos níveis atômicos de energia e no caso dos sólidos cristalinos, a aproximação entre os átomos leva a um agrupamento dos estados em bandas de energia. Estas bandas são vistas nas relações de dispersão para os sólidos como sendo as regiões de energia permitidas para os elétrons, separadas umas das outras por janelas de energias proibidas (ou “gaps”).
Rigorosamente falando,[1] a energia do nível de Fermi é definida em sistemas à temperatura de zero absoluto. Nesse caso, a energia do nível de Fermi é a energia do nível mais energético ocupado, visto que nessa temperatura todos os níveis com energia menor que a energia do nível de Fermi estariam ocupados (probabilidade igual a 1) e todos os níveis com energia acima, desocupados (probabilidade de ocupação nula). Para sistemas em temperaturas não nulas, não temos mais uma transição abrupta da probabilidade de ocupação, e sim uma probabilidade dada pela distribuição de Fermi-Dirac. Considera-se então como a energia do nível de Fermi a energia obtida pela média aritmética ponderada das energias de cada estado energético afetado pela excitação térmica (estados com probabilidades de ocupação diferentes de 1 ou 0) pesadas cada qual pela respectiva probabilidade de ocupação do estado associado. O denominador desta média será obviamente o número de estados envolvidos no processo. Repare que em acordo com a estatística de Fermi, dentre os referidos estados os menos energéticos têm probabilidade de ocupação maior do que aqueles mais energéticos. Para aproximação de elétrons livres a densidade de estados cresce com a raiz quadrada da energia, resultando em uma parábola no gráfico de energia x densidade de estados. Em semicondutores e isolantes esta dependência pode ser bem mais complicada.
Outra definição equivalente implica dizer que a energia de Fermi corresponde ao potencial eletroquímico do sistema na temperatura de zero absoluto. Uma extensão a temperaturas maiores é evidente, e a energia de Fermi corresponde assim ao potencial eletroquímico do sistema na temperatura considerada. A energia de Fermi expressa, portanto, qual seria a variação da energia interna total do sólido, considerado sempre como sistema isolado e em equilíbrio termodinâmico, caso um elétron fosse dele removido. Sendo ENtotal a energia total do sistema no estado neutro, em seu equilíbrio termodinâmico, e EN-1total a energia total do sistema também em seu novo equilíbrio termodinâmico mas após a remoção do elétron, temos que:
- EF = ENtotal - EN-1total
Nas definições acima, o nível de referência é o nível de menor energia disponível aos N elétrons, e a remoção de um elétron provoca, então, a redução da energia do sistema. Neste referencial a energia de Fermi é, portanto, positiva, bem como o potencial eletroquímico.
Quando dois materiais diferentes são colocados em contato, a condição de equilíbrio termodinâmico exige que as suas energias de Fermi sejam iguais. Se as energias de Fermi fossem diferentes, a passagem de um elétron do sólido com maior energia de Fermi para o sólido com menor energia de Fermi resultaria em uma diminuição da energia total do sistema e o sistema composto não estaria, então, em sua configuração de equilíbrio, a de mínima energia, conforme exigido pelas leis da termodinâmica. Este fato dá origem a um fenômeno conhecido por diferença de potencial de contato que encontra diversas aplicações práticas, a saber na eletrônica de estado sólido (junção PN) e no uso do metal de sacrifício em navios.
Ilustração do conceito para compartimento monodimensional quadrado
A monodimensional compartimento quadrado infinito é um modelo para uma caixa mono dimensional. É um sitema modelo padrão em mecânica quântica para o qual a solução para uma partícula isolada é bem conhecido. Os níveis são marcados por um único número quântico n e as energias são dadas por
- .
Suponha-se agora que em vez de uma partícula nesta caixa nós temos N partículas na caixa e que estas partículas são férmions com spin 1/2. Então somente duas partículas podem ter a mesma energia i.e. duas partículas podem ter a energia de , ou duas partículas podem ter energia e assim por diante. A razão que duas partículas podem ter a mesma energia é que uma partícula de spin 1/2 pode ter um spin de 1/2 (spin "acima") ou um spin de -1/2 (spin "abaixo"), conduzindo a dois estadois para cada nível de energia. Quando nós olhamos na energia total deste sistema, a configuração para as quais a energia total é a menor (o estado fundamental), é a configuração onde todos os níveis de energia acima de n=N/2 estão ocupados e todos os níveis mais altos estão vazios. A energia de Fermi é consequentemente
- .
O caso tridimensional
O caso tridimensional isotrópico é conhecido como a esfera de Fermi.
Deixe-nos agora considerar uma caixa cúbica tridimensional que tem um lado de comprimento L (ver compartimento quadrado infinito). Este torna-se uma muito boa aproximação para descrever elétrons em um metal.
Os estados agora são marcados po três números quânticos nx, ny, e nz. As energias da partícula isolada são
- nx, ny, nz são inteiros positivos.
Existem múltiplos estados com a mesma energia, por exemplo . Agora deixemos colocar-se N férmions não interativos de spin 1/2 nesta caixa. Para calcular a energia de Fermi, nós veremos no caso de que N é grande.
Se nós introduzios um vetor então cada estado quântico corresponde a um ponto num "n-espaço" com energia
- .
O número de estados com energia menor que Ef é igual ao número de estados que residem em uma esfera de raio na região do "n-espaço" onde nx, ny, nz são positivos. No estado básico este número iguala o número de férmions no sistema.
o fator é de dois é novamente porque são doisestados de spin, o fator de 1/8 é porque somente 1/8 da esfera repousa na região onde todos n são positivos.
Nós obtemos
então a energia de Fermi é dada por
Tais resultados em uma relação entre a energia de Fermi e o número de partículas por volume (quando nós substituímos L2 com V2/3):
A energia de Fermi total de um esfera de fermi de férmions é dada por
Energia de Fermi total:
Integração por substituição:
A eliminação de em favor de :
Energias de Fermi típicas
Anãs brancas
Estrelas conhecidas como anãs brancas tem massa comparável a nosso Sol, mas têm um raio aproximadamente 100 vezes menor. As alta densidades implicam que os elétrons estão não mais ligados a um núcleo isolado e formam um gás de elétrons degenerado. Os números da densidade de elétrons em uma anã branca são da ordem de 1036 elétrons/m3. Isto significa que sua energia de Fermi é:
Núcleos
Outro exemplo típico é as partículas em um núcleo de um átomo. Os núcleons de um núcleo atômico pode ser tratado, assim, como um gás de Fermi e como tal, modelado.[2]
O raio do núcleo é aproximadamente[3]:
- onde A é o número de núcleons.
O número densidade de núcleons em um núcleo é conseqüentemente:
Agora, como a energia de fermi somente aplica-se a férmions de mesmo tipo, deve-se dividir esta energia por dois. Isto por causa da presença de nêutrons que não afetam a energia de Fermi dos prótons no núcleo, e vice versa.[4][5][6]
Assim a energia de fermi de um núcleo é dada por:
O raio do núcleo admite desvios em torno do valor mencionado acima, então um típico valor para a energia de Fermi normalmente dada é 38 MeV.
Um gás de férmions, gás de Fermi ou gás de elétrons livres é um conjunto de férmions não interativos. É a versão na Mecânica Quântica de um gás ideal, para o caso de partículas fermiônicas. Elétrons em metais e semicondutores e nêutrons em estrelas de nêutrons podem aproximadamente ser considerados gases de Fermi.
A distribuição de energia dos férmions em um gás de Fermi em equilíbrio térmico é determinada por sua densidade, pela temperatura e pelos estados de energia disponíveis, via a estatística de Fermi-Dirac. Pelo princípio de exclusão de Pauli, nenhum estado quântico pode ser ocupado por mais que um férmion, então a energia total do gás de Fermi à temperatura do zero absoluto é tão grande quanto o produto do número de partículas pelo estado de energia de cada partícula. Por esta razão, a pressão de um gás Fermi é diferente de zero na temperatura de zero absoluto, em contraste com um gás ideal clássico. Esta então chamada pressão de degenerescência estabiliza uma estrela de nêutrons (um gás de Fermi de nêutrons) ou uma estrela anã branca (um gás de Fermi de elétrons) contra a tração interna da gravidade.
É possível definir uma temperatura de Fermi abaixo do qual o gás pode ser considerado degenerado. Esta temperatura depende da massa dos férmions e da energia da densidade dos estados. Para metais, a temperatura do gás de elétrons de Fermi é geralmente de muitos milhares de kelvins, quando então eles podem ser considerados degenerados. A máxima energia dos férmions a temperatura do zero absoluto é chamada energia de Fermi. A superfície da energia de Fermi no momento espacial é chamada superfície de Fermi.
Desde que as interações são negligenciadas por definição, o problema de tratar propriedades do equilíbrio e o comportamento dinâmico de um gás de Fermi se reduz ao estudo do comportamento de partículas independentes e isoladas. Como está, é ainda relativamente tratável e dá forma ao ponto de servir de base para teorias mais avançadas (tais como a teoria do líquido de Fermi ou a teoria perturbacional) as quais levam em conta as interações com algum grau de exatidão.
Descrição matemática
Dentro da estrutura que a física estatística possibilita, segue-se que com a ajuda de conjuntos estatísticos para um número médio de ocupação dos estados com a energia da estatística de Fermi-Dirac:
Onde é o potencial químico, a temperatura e a constante de Boltzmann.
Estes férmions, que estão sujeitos ao princípio de exclusão de Pauli, podem estar na condição de máxima ocupação, ou seja . Esta condição é que a estatística de Fermi-Dirac tratará para qualquer valor de preenchimento pleno , porque o potencial químico de um gás ideal de Fermi não é sujeito a quaisquer restrições.
Comentários
Postar um comentário